LNS 133TB

TOP FEATURES

- High Manganese and microalloying elements to optimize impact toughness in 2-run technique at low temperature
- Molybdenum free composition to limit the secondary hardening phenomena
- Suitable for pipe grade up to X90

CLASSIFICATION

AWS A5.23 EG EN ISO 14171-A SZ

CHEMICAL COMPOSITION (WEIGHT %), TYPICAL, WIRE

С	Mn	Si	Ti	В
0.08	1.55	0.25	0.15	0.015

PACKAGING AND AVAILABLE SIZES

Wire diameter (mm)	Packaging	Weight (kg)	Item number
4.0	SPOOL	25.0	LNS133TB-4-25VCI
	DRUM	350.0	LNS133TB-4-350
	REEL	350.0	LNS133TB-4-350R
	DRUM	600.0	LNS133TB-4-600SF
	COIL	1000.0	LNS133TB-4-1T
4.8	DRUM	350.0	LNS133TB-48-350

TEST RESULTS

Test results for mechanical properties, deposit or electrode composition and diffusible hydrogen levels were obtained from a weld produced and tested according to prescribed standards, and should not be assumed to be the expected results in a particular application or weldment. Actual results will vary depending on many factors, including, but not limited to, weld procedure, plate chemistry and temperature, weldment design and fabrication methods. Users are cautioned to confirm by qualification testing, or other appropriate means, the suitability of any welding consumable and procedure before use in the intended application

Safety Data Sheets (SDS) are available here:

Subject to Change – The information is accurate to the best of our knowledge at the time of printing. Please refer to www.lincolnelectric.eu for any updated information.

LNS 133TB-EN-29/09/22

